Eris_api_tensor_patch/api.py

1022 lines
47 KiB
Python
Raw Permalink Normal View History

2023-11-14 19:43:33 +00:00
import base64
import io
import os
import time
import datetime
import uvicorn
import ipaddress
import requests
import gradio as gr
from threading import Lock
from io import BytesIO
from fastapi import APIRouter, Depends, FastAPI, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import HTTPException
from fastapi.responses import JSONResponse
from fastapi.encoders import jsonable_encoder
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items, script_callbacks, generation_parameters_copypaste, sd_models
2023-11-14 19:43:33 +00:00
from modules.api import models
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin, Image
2023-11-14 19:43:33 +00:00
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import Any
2023-11-14 19:43:33 +00:00
import piexif
import piexif.helper
from contextlib import closing
2023-11-14 19:46:55 +00:00
'''
Eris Bot API modifier
Eris Promptlog:
Every Prompt that is send from through the API will be saved in a Textfile, with the current date as name, in a folder named "logs"
Eris Imagelog:
Every generated Images will be saved in the default "outputs" folder
Eris Consolelog:
Every Prompt that is send from through the API will be displayed in the console/terminal window
Eris TRTpatch:
Necessary modification for the TRT Plugin to work.
Please refer the Readme on https://git.foxo.me/Hitmare/Eris_api_tensor_patch for the full TRTpatch instructions
2023-11-14 19:46:55 +00:00
Eris Imagelimit:
Will resize every request down to 1024px max on height and width, keeping the aspect ratio. Also reduces Steps down to the set limit if the set Steps exceeds the limit
Compatible with the TRTpatch. Please refer the Readme on https://git.foxo.me/Hitmare/Eris_api_tensor_patch for the full TRTpatch instructions
2023-11-14 19:46:55 +00:00
To activate any modifications, change the "False" to "True". The capital "T" is important
for example:
eris_imagelog = True
'''
# Eris modifier switches
eris_promtlog = False
eris_imagelog = False
eris_consolelog = False
eris_TRTpatch = False
eris_imagelimit = False
# Limits for text2image. needs eris_imagelimit = True
txt_max_width_height = 1024
txt_min_width_height = 320
txt_max_pixel_count = 589824
txt_max_steps = 35
txt_max_characters = 2000
# Limits for image2image. needs eris_imagelimit = True
img_max_width_height = 1024
img_min_width_height = 320
img_max_pixel_count = 589824
img_max_steps = 35
img_max_characters = 2000
2023-11-14 19:43:33 +00:00
def script_name_to_index(name, scripts):
try:
return [script.title().lower() for script in scripts].index(name.lower())
except Exception as e:
raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
if config is None:
raise HTTPException(status_code=404, detail="Sampler not found")
return name
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
return reqDict
def verify_url(url):
"""Returns True if the url refers to a global resource."""
import socket
from urllib.parse import urlparse
try:
parsed_url = urlparse(url)
domain_name = parsed_url.netloc
host = socket.gethostbyname_ex(domain_name)
for ip in host[2]:
ip_addr = ipaddress.ip_address(ip)
if not ip_addr.is_global:
return False
except Exception:
return False
return True
def decode_base64_to_image(encoding):
if encoding.startswith("http://") or encoding.startswith("https://"):
if not opts.api_enable_requests:
raise HTTPException(status_code=500, detail="Requests not allowed")
if opts.api_forbid_local_requests and not verify_url(encoding):
raise HTTPException(status_code=500, detail="Request to local resource not allowed")
headers = {'user-agent': opts.api_useragent} if opts.api_useragent else {}
response = requests.get(encoding, timeout=30, headers=headers)
try:
image = Image.open(BytesIO(response.content))
return image
except Exception as e:
raise HTTPException(status_code=500, detail="Invalid image url") from e
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
try:
image = Image.open(BytesIO(base64.b64decode(encoding)))
return image
except Exception as e:
raise HTTPException(status_code=500, detail="Invalid encoded image") from e
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
if isinstance(image, str):
return image
2023-11-14 19:43:33 +00:00
if opts.samples_format.lower() == 'png':
use_metadata = False
metadata = PngImagePlugin.PngInfo()
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
use_metadata = True
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
if image.mode == "RGBA":
image = image.convert("RGB")
parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
})
if opts.samples_format.lower() in ("jpg", "jpeg"):
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
else:
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
else:
raise HTTPException(status_code=500, detail="Invalid image format")
bytes_data = output_bytes.getvalue()
return base64.b64encode(bytes_data)
def api_middleware(app: FastAPI):
rich_available = False
try:
if os.environ.get('WEBUI_RICH_EXCEPTIONS', None) is not None:
import anyio # importing just so it can be placed on silent list
import starlette # importing just so it can be placed on silent list
from rich.console import Console
console = Console()
rich_available = True
except Exception:
pass
@app.middleware("http")
async def log_and_time(req: Request, call_next):
ts = time.time()
res: Response = await call_next(req)
duration = str(round(time.time() - ts, 4))
res.headers["X-Process-Time"] = duration
endpoint = req.scope.get('path', 'err')
if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
t=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
code=res.status_code,
ver=req.scope.get('http_version', '0.0'),
cli=req.scope.get('client', ('0:0.0.0', 0))[0],
prot=req.scope.get('scheme', 'err'),
method=req.scope.get('method', 'err'),
endpoint=endpoint,
duration=duration,
))
return res
def handle_exception(request: Request, e: Exception):
err = {
"error": type(e).__name__,
"detail": vars(e).get('detail', ''),
"body": vars(e).get('body', ''),
"errors": str(e),
}
if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions
message = f"API error: {request.method}: {request.url} {err}"
if rich_available:
print(message)
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
else:
errors.report(message, exc_info=True)
return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))
@app.middleware("http")
async def exception_handling(request: Request, call_next):
try:
return await call_next(request)
except Exception as e:
return handle_exception(request, e)
@app.exception_handler(Exception)
async def fastapi_exception_handler(request: Request, e: Exception):
return handle_exception(request, e)
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, e: HTTPException):
return handle_exception(request, e)
class Api:
def __init__(self, app: FastAPI, queue_lock: Lock):
if shared.cmd_opts.api_auth:
self.credentials = {}
for auth in shared.cmd_opts.api_auth.split(","):
user, password = auth.split(":")
self.credentials[user] = password
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
api_middleware(self.app)
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse)
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse)
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse)
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse)
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse)
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse)
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel)
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=list[models.SamplerItem])
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=list[models.UpscalerItem])
self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=list[models.LatentUpscalerModeItem])
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=list[models.SDModelItem])
self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=list[models.SDVaeItem])
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=list[models.HypernetworkItem])
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=list[models.FaceRestorerItem])
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=list[models.RealesrganItem])
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=list[models.PromptStyleItem])
2023-11-14 19:43:33 +00:00
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse)
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"])
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse)
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse)
self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=list[models.ScriptInfo])
self.add_api_route("/sdapi/v1/extensions", self.get_extensions_list, methods=["GET"], response_model=list[models.ExtensionItem])
2023-11-14 19:43:33 +00:00
if shared.cmd_opts.api_server_stop:
self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"])
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
return self.app.add_api_route(path, endpoint, **kwargs)
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
if credentials.username in self.credentials:
if compare_digest(credentials.password, self.credentials[credentials.username]):
return True
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
def get_selectable_script(self, script_name, script_runner):
if script_name is None or script_name == "":
return None, None
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx]
return script, script_idx
def get_scripts_list(self):
t2ilist = [script.name for script in scripts.scripts_txt2img.scripts if script.name is not None]
i2ilist = [script.name for script in scripts.scripts_img2img.scripts if script.name is not None]
return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist)
def get_script_info(self):
res = []
for script_list in [scripts.scripts_txt2img.scripts, scripts.scripts_img2img.scripts]:
res += [script.api_info for script in script_list if script.api_info is not None]
return res
def get_script(self, script_name, script_runner):
if script_name is None or script_name == "":
return None, None
script_idx = script_name_to_index(script_name, script_runner.scripts)
return script_runner.scripts[script_idx]
def init_default_script_args(self, script_runner):
#find max idx from the scripts in runner and generate a none array to init script_args
last_arg_index = 1
for script in script_runner.scripts:
if last_arg_index < script.args_to:
last_arg_index = script.args_to
# None everywhere except position 0 to initialize script args
script_args = [None]*last_arg_index
script_args[0] = 0
# get default values
with gr.Blocks(): # will throw errors calling ui function without this
for script in script_runner.scripts:
if script.ui(script.is_img2img):
ui_default_values = []
for elem in script.ui(script.is_img2img):
ui_default_values.append(elem.value)
script_args[script.args_from:script.args_to] = ui_default_values
return script_args
def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner):
script_args = default_script_args.copy()
# position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run()
if selectable_scripts:
script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args
script_args[0] = selectable_idx + 1
# Now check for always on scripts
if request.alwayson_scripts:
for alwayson_script_name in request.alwayson_scripts.keys():
alwayson_script = self.get_script(alwayson_script_name, script_runner)
if alwayson_script is None:
raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found")
# Selectable script in always on script param check
if alwayson_script.alwayson is False:
raise HTTPException(status_code=422, detail="Cannot have a selectable script in the always on scripts params")
# always on script with no arg should always run so you don't really need to add them to the requests
if "args" in request.alwayson_scripts[alwayson_script_name]:
# min between arg length in scriptrunner and arg length in the request
for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))):
script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx]
return script_args
def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI):
2023-11-14 19:46:55 +00:00
# Eris TRTpacht
if eris_TRTpatch:
txt2imgreq.width = round(txt2imgreq.width / 64) * 64
txt2imgreq.height = round(txt2imgreq.height / 64) * 64
# Eris ______
# Eris imagelimit 1024x1024 35 Steps
if eris_imagelimit:
# Configuration variables
#max_width_height = 1024
#min_width_height = 320
#max_pixel_count = 589824
#max_steps = 35
#max_characters = 2000
max_width_height = txt_max_width_height
min_width_height = txt_min_width_height
max_pixel_count = txt_max_pixel_count
max_steps = txt_max_steps
max_characters = txt_max_characters
# Log the initial values
# initial_pixels = txt2imgreq.width * txt2imgreq.height
# print(f'Before processing: Resolution={txt2imgreq.width}x{txt2imgreq.height}, '
# f'Steps={txt2imgreq.steps}, Total Pixels={initial_pixels}')
# Log the length of the prompt before processing
# original_length = len(txt2imgreq.prompt)
# print(f'Original prompt length: {original_length} characters')
# Truncate the prompt if it exceeds the maximum number of characters
if len(txt2imgreq.prompt) > max_characters:
txt2imgreq.prompt = txt2imgreq.prompt[:max_characters]
# print(f'Truncated prompt length: {len(txt2imgreq.prompt)} characters')
# Calculate the initial aspect ratio
aspect_ratio = txt2imgreq.width / txt2imgreq.height
# Enforce maximum dimensions
if txt2imgreq.width > max_width_height or txt2imgreq.height > max_width_height:
if aspect_ratio > 1: # Image is wider than it is tall
txt2imgreq.width = max_width_height
txt2imgreq.height = int(max_width_height / aspect_ratio)
else: # Image is taller than it is wide
txt2imgreq.height = max_width_height
txt2imgreq.width = int(max_width_height * aspect_ratio)
# Enforce minimum dimensions
if txt2imgreq.width < min_width_height or txt2imgreq.height < min_width_height:
if aspect_ratio > 1: # Image is wider than it is tall
txt2imgreq.width = min_width_height
txt2imgreq.height = int(min_width_height / aspect_ratio)
else: # Image is taller than it is wide
txt2imgreq.height = min_width_height
txt2imgreq.width = int(min_width_height * aspect_ratio)
# Adjust based on maximum pixel count
if txt2imgreq.width * txt2imgreq.height > max_pixel_count:
scale_factor = (max_pixel_count / (txt2imgreq.width * txt2imgreq.height)) ** 0.5
txt2imgreq.width = int(txt2imgreq.width * scale_factor)
txt2imgreq.height = int(txt2imgreq.height * scale_factor)
# Clamp steps to the maximum allowed
txt2imgreq.steps = min(txt2imgreq.steps, max_steps)
# Ensure both dimensions are a multiple of 64
2023-11-14 19:46:55 +00:00
txt2imgreq.width = round(txt2imgreq.width // 64) * 64
txt2imgreq.height = round(txt2imgreq.height // 64) * 64
# Calculate the adjusted pixel amount after processing
# adjusted_pixels = txt2imgreq.width * txt2imgreq.height
# print(f'After processing: Resolution={txt2imgreq.width}x{txt2imgreq.height}, '
# f'Steps={txt2imgreq.steps}, Total Pixels={adjusted_pixels}')
2023-11-14 19:46:55 +00:00
# Eris ______
# Eris console prompt log -> writes promts into the console/terminal window
if eris_consolelog:
print('[t2i]', txt2imgreq.width, 'x', txt2imgreq.height, '|', txt2imgreq.prompt)
# Eris ______
2023-11-14 19:43:33 +00:00
script_runner = scripts.scripts_txt2img
if not script_runner.scripts:
script_runner.initialize_scripts(False)
ui.create_ui()
if not self.default_script_arg_txt2img:
self.default_script_arg_txt2img = self.init_default_script_args(script_runner)
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
2023-11-14 19:46:55 +00:00
# Eris save generated images -> will be saved in default outputs folder
if eris_imagelog:
txt2imgreq.save_images = True
# Eris ______
2023-11-14 19:43:33 +00:00
populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"do_not_save_samples": not txt2imgreq.save_images,
"do_not_save_grid": not txt2imgreq.save_images,
})
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('script_name', None)
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
args.pop('alwayson_scripts', None)
script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner)
send_images = args.pop('send_images', True)
args.pop('save_images', None)
2023-11-14 19:46:55 +00:00
# Eris Promtlog -> writing daily log file for txt2img into logs folder
if eris_imagelog:
logfolder = "logs"
if not os.path.exists(logfolder):
os.makedirs(logfolder)
apilogtxt2imgfile = open(f"{logfolder}/{datetime.date.today()}-txt2img.txt", "a")
apilogtxt2imgtext = f"[{datetime.datetime.now()}] Prompt: {txt2imgreq.prompt} | Negative prompt: {txt2imgreq.negative_prompt} | Steps: {txt2imgreq.steps} | Size: {txt2imgreq.width}x{txt2imgreq.height} | CFG: {txt2imgreq.cfg_scale}"
#replace newlines and returns to keep the prompt in one line
apilogtxt2imgtext.replace("\n", " ").replace("\r", " ")
apilogtxt2imgfile.write(f"{apilogtxt2imgtext}\n")
# Eris ______
2023-11-14 19:43:33 +00:00
with self.queue_lock:
with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
p.is_api = True
p.scripts = script_runner
p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples
try:
shared.state.begin(job="scripts_txt2img")
if selectable_scripts is not None:
p.script_args = script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
finally:
shared.state.end()
shared.total_tqdm.clear()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
2023-11-14 19:46:55 +00:00
# Eris TRTpatch
if eris_TRTpatch:
img2imgreq.width = round(img2imgreq.width / 64) * 64
img2imgreq.height = round(img2imgreq.height / 64) * 64
# Eris ______
# Eris imagelimit 1024x1024 35 Steps
if eris_imagelimit:
# Configuration variables
#max_width_height = 1024
#min_width_height = 320
#max_pixel_count = 589824
#max_steps = 35
#max_characters = 2000
max_width_height = img_max_width_height
min_width_height = img_min_width_height
max_pixel_count = img_max_pixel_count
max_steps = img_max_steps
max_characters = img_max_characters
# Log the initial values
# initial_pixels = img2imgreq.width * img2imgreq.height
# print(f'Before processing: Resolution={img2imgreq.width}x{img2imgreq.height}, '
# f'Steps={img2imgreq.steps}, Total Pixels={initial_pixels}')
# Truncate the prompt if it exceeds the maximum number of characters
if len(img2imgreq.prompt) > max_characters:
img2imgreq.prompt = img2imgreq.prompt[:max_characters]
# Calculate the initial aspect ratio
aspect_ratio = img2imgreq.width / img2imgreq.height
# Enforce maximum dimensions
if img2imgreq.width > max_width_height or img2imgreq.height > max_width_height:
if aspect_ratio > 1: # Image is wider than it is tall
img2imgreq.width = max_width_height
img2imgreq.height = int(max_width_height / aspect_ratio)
else: # Image is taller than it is wide
img2imgreq.height = max_width_height
img2imgreq.width = int(max_width_height * aspect_ratio)
# Enforce minimum dimensions
if img2imgreq.width < min_width_height or img2imgreq.height < min_width_height:
if aspect_ratio > 1: # Image is wider than it is tall
img2imgreq.width = min_width_height
img2imgreq.height = int(min_width_height / aspect_ratio)
else: # Image is taller than it is wide
img2imgreq.height = min_width_height
img2imgreq.width = int(min_width_height * aspect_ratio)
# Adjust based on maximum pixel count
if img2imgreq.width * img2imgreq.height > max_pixel_count:
scale_factor = (max_pixel_count / (img2imgreq.width * img2imgreq.height)) ** 0.5
img2imgreq.width = int(img2imgreq.width * scale_factor)
img2imgreq.height = int(img2imgreq.height * scale_factor)
# Clamp steps to the maximum allowed
img2imgreq.steps = min(img2imgreq.steps, max_steps)
# Ensure both dimensions are a multiple of 64
img2imgreq.width = round(img2imgreq.width // 64) * 64
img2imgreq.height = round(img2imgreq.height // 64) * 64
# Calculate the adjusted pixel amount after processing
# adjusted_pixels = img2imgreq.width * img2imgreq.height
# print(f'After processing: Resolution={img2imgreq.width}x{img2imgreq.height}, '
# f'Steps={img2imgreq.steps}, Total Pixels={adjusted_pixels}')
2023-11-14 19:46:55 +00:00
# Eris ______
# Eris console prompt log -> writes promts into the console/terminal window
if eris_consolelog:
print('[i2i]', img2imgreq.width, 'x', img2imgreq.height, '|', img2imgreq.prompt)
# Eris ______
2023-11-14 19:43:33 +00:00
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
script_runner = scripts.scripts_img2img
if not script_runner.scripts:
script_runner.initialize_scripts(True)
ui.create_ui()
if not self.default_script_arg_img2img:
self.default_script_arg_img2img = self.init_default_script_args(script_runner)
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
2023-11-14 19:46:55 +00:00
# Eris save generated images -> will be saved in default outputs folder
if eris_imagelog:
img2imgreq.save_images = True
# Eris ______
2023-11-14 19:43:33 +00:00
populate = img2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
"do_not_save_samples": not img2imgreq.save_images,
"do_not_save_grid": not img2imgreq.save_images,
"mask": mask,
})
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
args.pop('alwayson_scripts', None)
script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner)
send_images = args.pop('send_images', True)
args.pop('save_images', None)
2023-11-14 19:46:55 +00:00
# Eris Promtlog -> writing daily log file for txt2img into logs folder
if eris_promtlog:
logfolder = "logs"
if not os.path.exists(logfolder):
os.makedirs(logfolder)
apilogimg2imgfile = open(f"{logfolder}/{datetime.date.today()}-img2img.txt", "a")
apilogimg2imgtext = f"[{datetime.datetime.now()}] Prompt: {img2imgreq.prompt} | Negative prompt: {img2imgreq.negative_prompt} | Steps: {img2imgreq.steps} | Size: {img2imgreq.width}x{img2imgreq.height} | CFG: {img2imgreq.cfg_scale} | Denoising: {img2imgreq.denoising_strength}"
#replace newlines and returns to keep the prompt in one line
apilogimg2imgtext.replace("\n", " ").replace("\r", " ")
apilogimg2imgfile.write(f"{apilogimg2imgtext}\n")
# Eris ______
2023-11-14 19:43:33 +00:00
with self.queue_lock:
with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
p.init_images = [decode_base64_to_image(x) for x in init_images]
p.is_api = True
p.scripts = script_runner
p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples
try:
shared.state.begin(job="scripts_img2img")
if selectable_scripts is not None:
p.script_args = script_args
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
finally:
shared.state.end()
shared.total_tqdm.clear()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
if not img2imgreq.include_init_images:
img2imgreq.init_images = None
img2imgreq.mask = None
return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
def extras_single_image_api(self, req: models.ExtrasSingleImageRequest):
reqDict = setUpscalers(req)
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
image_list = reqDict.pop('imageList', [])
image_folder = [decode_base64_to_image(x.data) for x in image_list]
with self.queue_lock:
result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
def pnginfoapi(self, req: models.PNGInfoRequest):
image = decode_base64_to_image(req.image.strip())
if image is None:
return models.PNGInfoResponse(info="")
geninfo, items = images.read_info_from_image(image)
if geninfo is None:
geninfo = ""
params = generation_parameters_copypaste.parse_generation_parameters(geninfo)
script_callbacks.infotext_pasted_callback(geninfo, params)
2023-11-14 19:43:33 +00:00
return models.PNGInfoResponse(info=geninfo, items=items, parameters=params)
2023-11-14 19:43:33 +00:00
def progressapi(self, req: models.ProgressRequest = Depends()):
# copy from check_progress_call of ui.py
if shared.state.job_count == 0:
return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
# avoid dividing zero
progress = 0.01
if shared.state.job_count > 0:
progress += shared.state.job_no / shared.state.job_count
if shared.state.sampling_steps > 0:
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
progress = min(progress, 1)
shared.state.set_current_image()
current_image = None
if shared.state.current_image and not req.skip_current_image:
current_image = encode_pil_to_base64(shared.state.current_image)
return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
def interrogateapi(self, interrogatereq: models.InterrogateRequest):
image_b64 = interrogatereq.image
if image_b64 is None:
raise HTTPException(status_code=404, detail="Image not found")
img = decode_base64_to_image(image_b64)
img = img.convert('RGB')
# Override object param
with self.queue_lock:
if interrogatereq.model == "clip":
processed = shared.interrogator.interrogate(img)
elif interrogatereq.model == "deepdanbooru":
processed = deepbooru.model.tag(img)
else:
raise HTTPException(status_code=404, detail="Model not found")
return models.InterrogateResponse(caption=processed)
def interruptapi(self):
shared.state.interrupt()
return {}
def unloadapi(self):
sd_models.unload_model_weights()
2023-11-14 19:43:33 +00:00
return {}
def reloadapi(self):
sd_models.send_model_to_device(shared.sd_model)
2023-11-14 19:43:33 +00:00
return {}
def skip(self):
shared.state.skip()
def get_config(self):
options = {}
for key in shared.opts.data.keys():
metadata = shared.opts.data_labels.get(key)
if(metadata is not None):
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
else:
options.update({key: shared.opts.data.get(key, None)})
return options
def set_config(self, req: dict[str, Any]):
2023-11-14 19:43:33 +00:00
checkpoint_name = req.get("sd_model_checkpoint", None)
if checkpoint_name is not None and checkpoint_name not in sd_models.checkpoint_aliases:
2023-11-14 19:43:33 +00:00
raise RuntimeError(f"model {checkpoint_name!r} not found")
for k, v in req.items():
shared.opts.set(k, v, is_api=True)
shared.opts.save(shared.config_filename)
return
def get_cmd_flags(self):
return vars(shared.cmd_opts)
def get_samplers(self):
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
def get_upscalers(self):
return [
{
"name": upscaler.name,
"model_name": upscaler.scaler.model_name,
"model_path": upscaler.data_path,
"model_url": None,
"scale": upscaler.scale,
}
for upscaler in shared.sd_upscalers
]
def get_latent_upscale_modes(self):
return [
{
"name": upscale_mode,
}
for upscale_mode in [*(shared.latent_upscale_modes or {})]
]
def get_sd_models(self):
import modules.sd_models as sd_models
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in sd_models.checkpoints_list.values()]
def get_sd_vaes(self):
import modules.sd_vae as sd_vae
return [{"model_name": x, "filename": sd_vae.vae_dict[x]} for x in sd_vae.vae_dict.keys()]
def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
def get_face_restorers(self):
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
def get_realesrgan_models(self):
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
def get_prompt_styles(self):
styleList = []
for k in shared.prompt_styles.styles:
style = shared.prompt_styles.styles[k]
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
return styleList
def get_embeddings(self):
db = sd_hijack.model_hijack.embedding_db
def convert_embedding(embedding):
return {
"step": embedding.step,
"sd_checkpoint": embedding.sd_checkpoint,
"sd_checkpoint_name": embedding.sd_checkpoint_name,
"shape": embedding.shape,
"vectors": embedding.vectors,
}
def convert_embeddings(embeddings):
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
return {
"loaded": convert_embeddings(db.word_embeddings),
"skipped": convert_embeddings(db.skipped_embeddings),
}
def refresh_checkpoints(self):
with self.queue_lock:
shared.refresh_checkpoints()
def refresh_vae(self):
with self.queue_lock:
shared_items.refresh_vae_list()
def create_embedding(self, args: dict):
try:
shared.state.begin(job="create_embedding")
filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
return models.CreateResponse(info=f"create embedding filename: {filename}")
except AssertionError as e:
return models.TrainResponse(info=f"create embedding error: {e}")
finally:
shared.state.end()
def create_hypernetwork(self, args: dict):
try:
shared.state.begin(job="create_hypernetwork")
filename = create_hypernetwork(**args) # create empty embedding
return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
except AssertionError as e:
return models.TrainResponse(info=f"create hypernetwork error: {e}")
finally:
shared.state.end()
def train_embedding(self, args: dict):
try:
shared.state.begin(job="train_embedding")
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
if not apply_optimizations:
sd_hijack.undo_optimizations()
try:
embedding, filename = train_embedding(**args) # can take a long time to complete
except Exception as e:
error = e
finally:
if not apply_optimizations:
sd_hijack.apply_optimizations()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except Exception as msg:
return models.TrainResponse(info=f"train embedding error: {msg}")
finally:
shared.state.end()
def train_hypernetwork(self, args: dict):
try:
shared.state.begin(job="train_hypernetwork")
shared.loaded_hypernetworks = []
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
if not apply_optimizations:
sd_hijack.undo_optimizations()
try:
hypernetwork, filename = train_hypernetwork(**args)
except Exception as e:
error = e
finally:
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
if not apply_optimizations:
sd_hijack.apply_optimizations()
shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except Exception as exc:
return models.TrainResponse(info=f"train embedding error: {exc}")
finally:
shared.state.end()
def get_memory(self):
try:
import os
import psutil
process = psutil.Process(os.getpid())
res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
except Exception as err:
ram = { 'error': f'{err}' }
try:
import torch
if torch.cuda.is_available():
s = torch.cuda.mem_get_info()
system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
s = dict(torch.cuda.memory_stats(shared.device))
allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
cuda = {
'system': system,
'active': active,
'allocated': allocated,
'reserved': reserved,
'inactive': inactive,
'events': warnings,
}
else:
cuda = {'error': 'unavailable'}
except Exception as err:
cuda = {'error': f'{err}'}
return models.MemoryResponse(ram=ram, cuda=cuda)
def get_extensions_list(self):
from modules import extensions
extensions.list_extensions()
ext_list = []
for ext in extensions.extensions:
ext: extensions.Extension
ext.read_info_from_repo()
if ext.remote is not None:
ext_list.append({
"name": ext.name,
"remote": ext.remote,
"branch": ext.branch,
"commit_hash":ext.commit_hash,
"commit_date":ext.commit_date,
"version":ext.version,
"enabled":ext.enabled
})
return ext_list
2023-11-14 19:43:33 +00:00
def launch(self, server_name, port, root_path):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive, root_path=root_path)
def kill_webui(self):
restart.stop_program()
def restart_webui(self):
if restart.is_restartable():
restart.restart_program()
return Response(status_code=501)
def stop_webui(request):
shared.state.server_command = "stop"
return Response("Stopping.")